Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: proposed revisions to MPES.

نویسندگان

  • Joseph A Zuclich
  • David J Lund
  • Bruce E Stuck
چکیده

This report summarizes the results of a series of infrared (IR) laser-induced ocular damage studies conducted over the past decade. The studies examined retinal, lens, and corneal effects of laser exposures in the near-IR to far-IR transition region (wavelengths from 1.3-1.4 mum with exposure durations ranging from Q-switched to continuous wave). The corneal and retinal damage thresholds are tabulated for all pulsewidth regimes, and the wavelength dependence of the IR thresholds is discussed and contrasted to laser safety standard maximum permissible exposure limits. The analysis suggests that the current maximum permissible exposure limits could be beneficially revised to (1) relax the IR limits over wavelength ranges where unusually high safety margins may unintentionally hinder applications of recently developed military and telecommunications laser systems; (2) replace step-function discontinuities in the IR limits by continuously varying analytical functions of wavelength and pulsewidth which more closely follow the trends of the experimental retinal (for point-source laser exposures) and corneal ED50 threshold data; and (3) result in an overall simplification of the permissible exposure limits over the wavelength range from 1.2-2.6 mum. A specific proposal for amending the IR maximum permissible exposure limits over this wavelength range is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of laser-induced retinal damage from infrared wavelengths to that from visible wavelengths

Corneal, lenticular, and retinal damage have been observed following exposures to a laser emitting in the near-infrared wavelength range (Nd:Y AG, 1.318 ~m). Ocular damage thresholds are much higher than for visible wavelengths. However, it was found that infrared (IR) exposures may result in multiple damage sites throughout the ocular medium and retina; that exposure sites which initially appe...

متن کامل

Multiple Scattering in Clumpy Media. Ii. Galactic Environments

We present and discuss the results of new multiple-scattering radiative transfer calculations for three representative types of galactic environments, filled with either homogeneous or two-phase clumpy dust distributions. Extinction and scattering properties for two types of interstellar dust, similar to those found in the average diffuse medium of the Milky Way Galaxy (MW) and the Bar of the S...

متن کامل

Simulation of IR Detector at Communication Window of 1550nm based on Graphene

In this paper, photodetection properties of a Graphene-based device at the third telecommunication window have been reported. The structure of the device is a Graphene-silicon Schottky junction which has been simulated in the form of an infrared photodetector. Graphene has specific electrical and optical properties which makes this material a good candidate for optoelectronic applications. Phot...

متن کامل

Simultaneous Exposure Using 532 and 860 nm lasers for visible lesion thresholds in the rhesus retina.

The growth of commercially available, simultaneous multi-wavelength laser systems has increased the likelihood of possible ocular hazard. For example, many systems utilize frequency multiplying methods to produce combinations of visible, near-infrared, and ultraviolet wavelengths. Unfortunately, very little data exists to substantiate the current methods for estimating hazards from simultaneous...

متن کامل

Ab initio calculations of thermal radiative properties: The semiconductor GaAs

Spectral reflectance of GaAs from infrared (IR) to ultra-violet (UV) bands is predicted using ab initio calculations. We first predict the spectral dielectric function. Two major mechanisms exist for different photon wavelength, namely, photon–electron coupling in the UV to near-IR region and photon–phonon coupling in the far-IR region. For the near-IR to UV band, the electronic band structure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Health physics

دوره 92 1  شماره 

صفحات  -

تاریخ انتشار 2007